Modele reduit de l`oeil

De nouvelles mesures de la différence chromatique de focalisation de l`œil humain ont été obtenues avec une technique d`alignement à deux couleurs et à Vernier. Les résultats ont été utilisés pour redéfinir la variation de l`indice de réfraction de l`œil réduit sur le spectre visible. L`œil réduit a été modifié en changeant la surface de réaction en une forme asphérique pour réduire la quantité d`aberration sphérique. Le modèle chromatique-oculaire qui en résulte fournit un compte rendu amélioré des formes longitudinales et transversales de l`aberration chromatique oculaire. Pour réaliser des calculs optiques simples, un œil schématique réduit, basé sur le modèle de Gullstrand, a été développé plus tard qui correspond approximativement aux dimensions oculaires mais simplifie les calculs en combinant toutes les surfaces de réfraction en une seule puissance et emplacement et tous les indices de réfraction en un. Dans l`oeil réel la cornée fournit 40 D et la lentille 20 D de la puissance de focalisation. Dans le modèle simplifié, ils sont combinés comme une unité de focalisation, situé à H, avec une puissance de focalisation totale (P) de 60 D. L`indice de réfraction de l`intérieur de l`œil est considéré comme n` = 1,33. Remarque la longueur totale des yeux dans le modèle réduit est: 17mm + 5.5 mm = 22.5 mm. Le point nodal, N, est le point à travers lequel les rayons lumineux voyagent non déviés. Les chiffres sont légèrement ajustés pour que les calculs soient cohérents.

Nous étendons le modèle d`œil schématique à une surface unique de l`aberration chromatique oculaire pour tenir compte de l`aberration sphérique de l`œil. Cette extension est accomplie en permettant à la surface de réaction unique du modèle d`être un membre de la famille des ellipses avec le paramètre de forme variable (excentricité). Le modèle qui en résulte, surnommé le «Indiana Eye», peut avoir une aberration sphérique positive ou négative de degré variable, selon la valeur numérique du paramètre de forme. L`aberration sphérique de l`œil du modèle est bien décrite par la théorie optique du troisième ordre pour les paramètres de forme dans la plage 0 < or = p < or = 0,7, mais nécessite une théorie du cinquième ordre pour une description précise sur la plage paramétrique 0,7 < p < or = 1,0. Une technique améliorée a été conçue pour adapter le modèle aux mesures publiées des aberrations de rayons tout en évitant les erreurs d`estimation du degré d`aberration sphérique présent dans les yeux qui manifestent également des aberrations symétriques, comme le coma. Une valeur de paramètre de forme d`environ p = 0,6 a fourni le meilleur ajustement du modèle aux données sélectionnées de la littérature. réciproque de la puissance de la lentille, et en tenant compte de l`indice de réfraction de l`intérieur de l`œil: les auteurs sont avec le département des sciences visuelles, école d`optométrie, Indiana University, Bloomington, Indiana 47405. Ceci est légèrement plus court que l`oeil schématique complet, qui est 22,4 mm. Larry N. thibos, Ming Ye, Xiaoxiao Zhang, et Arthur Bradley.

Gerald Westheimer J. opt. SOC. am. 53 (1) 86-93 (1963) avec cette formulation, nous pouvons faire des calculs simplifiés concernant les tailles d`objet et d`image. Pour voir un exemple aller à la taille est une lettre 20/20 sur le graphique des yeux?. Simon Winter, Mohammad Taghi fathi, Abinaya Priya Venkataraman, Robert Rosén, Anne Seidema, Gregor Esser, Linda Lundbeck, et Peter Unsbo J. opt. SOC. am. A 32 (10) 1764-1771 (2015) générez un fichier à utiliser avec un logiciel de gestion des citations externe.

M. J. Koomen, R. Scolnik, et R. TOUSEY J. opt. SOC. am. 46 (10) 903-904 (1956).

La longueur totale de l`œil est calculée à partir de la formule optique de base reliant la distance focale le rayon de courbure de la surface de rétorsion peut être calculé comme suit, en tenant compte de l`interface entre l`air et l`œil: Maurice Rynders, Bruce Lidkea, William Chisholm, et Larry N. thibos J. opt. SOC. am. A 12 (10) 2348-2357 (1995).

Les commentaires cont fermés.